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I. Introduction II. Model Development

Fish populations with the same initial body weight often exhibit substantial individual growth variability, even under Probabilistic Regression Architectures
identical rearing and feeding conditions. As illustrated by observed growth patterns, individual trajectories diverge over Three distributional regression methods were developed to estimate the conditional probability distribution P(Gy | W, z;) of daily growth G;
time, forming fast- and slow-growing subpopulations and leading to increasingly wide body weight distributions. This given current weight W; and environmental covariates z;:
variability is not merely incidental but rather an inherent characteristic of aquaculture systems, which becomes more (1) Distributional Regression with Shifted Gamma: An MLP with 2-4 hidden layers (256-512 units) directly estimates shape (o) and scale (j3)
pronounced as fish grow. parameters of a Gamma distribution. Global offset transformation accommodates occasional negative growth. Parameters were optimized via
Despite this evident heterogeneity, most conventional growth models rely on average growth rates or deterministic NLL minimization with dropout regularization (0.05-0.20) and early stopping (patience = 20).
trajectories. Such approaches obscure the underlying distributional structure, failing to capture variance expansion, G + ¢ ~ Gamma(a, B)
asymmetry, and extreme growth behaviors that emerge during the production cycle. Consequently, decisions based (@, B) = fo(W¢, )
solely on mean growth estimates offer limited reliability for practical operations, including harvest scheduling, tank (2) Mixture Density Network (MDN): A neural architecture estimating Gaussian mixture parameters—mixing coefficients (), means (uy),
transfers, and feed as well as energy demand forecasting, variances (0,2) —with M = 3-6 components to represent multimodal distributions and capture subpopulation heterogeneity. Softmax and
To support robust decision-making at both the farm and facility levels, growth models must account for uncertainty at softplus activations enforce parameter constraints.
M
the individual level and propagate it over time. Predicting the full probability distribution of growth, rather than a single
overtime, Frodief _ asne p(Ge10) = ) mCONGe | 1), 012 (x))
expected value, enables more realistic planning and risk-aware management. Motivated by these observations, this =
study proposes a distributed, agent-based fish growth simulation framework that integrates individual-level stochastic (3) Natural Gradient Boosting (NGBoost): A gradient boosting framework optimizing Gamma parameters via natural gradients derived from
growth modeling with machine learning-based probabilistic growth forecasting, thereby enabling distribution-aware information geometry. Decision trees (max depth = 3) serve as base learners, with 1,500-3,000 iterations and learning rate 0.03-0.12,
growth prediction and operational simulation. efficiently capturing nonlinear relationships while maintaining probabilistic calibration.
Growth distribution by Weight(g) bins (Violin Plot) -
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Hyperparameter Optimization
5 5 All models underwent rigorous Bayesian hyperparameter optimization using Optuna with Tree-structured Parzen Estimator (TPE) sampling, which
constructs probabilistic surrogate models to efficiently guide exploration of the hyperparameter space. The optimization objective minimized
5 bl validation NLL over 100-200 trials, with median pruning applied to terminate unpromising configurations early and reduce computational overhead.
Optimized hyperparameters included neural network architecture
£ Distributional . . . . . .
g1s- Hyperparameter ;:erglr;;iz?,a MDN NGBoost specifications (hidden layer dimensions: 256-512 units; depth: 2-4 layers),
Hidden layer size 256 384 _ regularization parameters (dropout rates: 0.05-0.20), training dynamics
1.0 Number of hidden layers 3 2 - (learning rates sampled log-uniformly from 10~ to 107%; batch sizes: 1,024-
Dropout rate 0.198 0.145 - 2,048), and convergence criteria (training epochs: 140-200 with early
0.5 Learning rate 122 x 10 1.81 x 10 0.078 stopping). For NGBoost, tree-specific parameters including maximum depth
Number of epochs 191 153 - (3), boosting iterations (1,500-3,000), and learning rate (0.03-0.12) were
0.0 Batch size 1,024 2,048 - similarly optimized. Table 1 summarizes the optimal hyperparameter
0-53 53-106 106-159 159-212 212-265 265-318 318-371 371-424 424-477 477-530 Number of mixture components - 6 - Conﬁgurations selected for each model. This systematic procedure ensured
Weight(g) bins
- J Number of boosting iterations - - 3,000 fair model comparisons based on architectural differences rather than
suboptimal configurations.
IT. Data Collection & Preprocessing , ,
Evaluation Metrics
Data Source and Scope Probabilistic performance was assessed via four complementary metrics. Negative Log-Likelihood (NLL) measures how well the predicted
Operational data were collected from a commercial Japanese eel (Anguilla japonica) aquaculture farm in distribution fits observed data, while Continuous Ranked Probability Score (CRPS) quantifies prediction- observation discrepancy by accounting
Gochang, South Korea, spanning 2018-2021. The dataset comprised 888 rearing cohorts (SETs), each for both location and spread. Coverage indicates the proportion of observations falling within predicted 90% confidence intervals, where ideal
representing an independent production unit from stocking to harvest or transfer. After preprocessing and coverage equals the nominal level. Probability Integral Transform (PIT) tests distributional calibration by assessing the uniformity of transformed
outlier removal, 795 cohorts yielding 81,876 daily growth records were retained for analysis. predictions. Distributional
Key variables included body weight (g), pH, water temperature (°C), dissolved oxygen (DO, mg/L), Metrie Regression MDN NGBoost
feeding rate (%), and survival rate (%). Environmental conditions were maintained within narrow ranges Model Performance and Selection NLL 0.4506 0.4660 0.4374
typical of recirculating aquaculture systems (RAS): temperature 27.5-31.5°C, pH 4.0-6.0, DO 9.5-17.5 mg/L. Test set evaluation revealed NGBoost achieved optimal accuracy-calibration CRPS 0.2647 0.2604 0.2607
balance (NLL = 0.437, CRPS = 0.261, Coverage = 90.3%), outperforming Coverage 0.9106 0.8910 0.9033
Variable Description Unit Data Type L. .
MDN (NLL = 0.466, CRPS = 0.260, Coverage = 89.1%) and Distributional Width 1.6326 1.5841 1.6262
SET Production cohort - Categorical )
) Regression (NLL = 0.451, CRPS = 0.265, Coverage = 91.1%)). PIT (p-value) <0.0001 <0.0001 <0.0001
days Rearing days day Integer
weight Estimated body weight (SGR-based) o Continuous Predicted probability density functions at representative weights (81.7g, 175.1g, 284.4g) confirmed consistent heteroscedasticity capture across
growth Daily weight gain g Continuous models— rightward distribution shifts with increasing variance as weight increased. NGBoost exhibited smooth, consistent distribution tracking and
pH pH - Continuous tail behavior. MDN demonstrated high shape flexibility, accurately capturing peaks and asymmetries. Distributional Regression provided a stable,
Temp Water temperature °C Continuous conservative baseline. Based on quantitative and qualitative evaluation, NGBoost was selected for multi-batch simulation.
DO Dissolved oxygen mg/L Continuous
Predictive PDFs at representative points Predictive PDFs at representative points Predictive PDFS at representative points
feedrate Feeding rate % Continuous point 14l point point
1.4 4 weight=81.7g ’ weight=81.7g 1.2 weight=281.7g
survival rate Survival rate % Continuous 12 o waightaznadg | 77 . welghtoznsag | 104 e welghta204.40
1.0 1.9 |
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Growth Data Construction g, . £ o gos
Given the impracticality of daily individual weighing in commercial operations, body weights were 041 o o
0.2 [ 0] 0.2
estimated daily using Specific Growth Rate (SGR) derived from initial and final measurements recorded oo oo . oo T
at stocking and harvest/transfer. This approach reconstructs continuous growth trajectories from discrete S R R e M ’ P growth ’
measurements, enabling daily-resolution modeling. _ Distributional Regression MDN NGBoost )

ln(Wf) - ln(Wl) %

SGR(%/day) = T 100
W= SGR IV. Results & Conclusion
e =W Xexpl| | 7| Xt
100
where Wy and W; denote mean body weights at harvest and stocking (g), T is the total culture duration A detailed reliability assessment was conducted for the selected NGBoost model. As shown in the diagnostic plots, predictions closely align with
(days). and W, is the estimated weight at day t. observations across the full range of daily growth values, without strong systematic bias. Empirical coverage increases monotonically with
SGR-based Growth Trajectory (Discrete Daily Estimates) confidence level, indicating well-calibrated prediction intervals. Most absolute errors remain concentrated within a small range, while the predicted
350 - Estimated points uncertainty distribution reflects realistic heteroscedastic variability rather than overconfident forecasts. Overall, these results support the use of
NGBoost as a stable probabilistic growth component for recursive multi-day simulation.
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. . Feed Rate Curve Fitting (4 Models)
To address the strong negative correlation —y—
_ . 10 1 — - Fower Frror Bannitors Uncertainty Distribution
between feeding rate and body weight (p = -0.66), ) — Logistic Error Magnitude 2.5 L
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which causes multicollinearity issues, a feed  °| § S : : RMSE = 03130 : | ------ Miean = 0653
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residual variable (feed resid) was constructed. A £ oy . ! i e P = (LBEF : P
power-law baseline feeding rate was fitted to % al 2.3 : i ' . |
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weight-specific median values, and residuals were i _ 2.0- | i | § i |
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calculated as deviations from this baseline. This j El 5 . ! ! 1.0 4
transformation removes weight dependency while 7 i
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Outlier Detection and Removal 0.0 . | " . . 604 B8.2% 050 075 1.00 1.25 1.50 1.75
Outliers were removed using the union of Isolation Forest and DBSCAN to reduce the influence of sparsely 0.0 0.5 1.0 1.5 2.0 2.5 Prediction Uncertainty (IQR)
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represented observations. Cohorts with daily survival rate drops exceeding 15%, final survival rates below
QI - 1.5xIQR, or minimum survival Z-scores below -2.5 were removed. Water quality outliers were filtered
using IQR-based thresholds (pH: 2xIQR, Temp: 2xIQR, DO: 1.5xIQR). The final dataset represents

normal rearing conditions without disease outbreaks or acute environmental stress. Average Weight) Weight Standerd Devitiog)
Combined Outliers (IsolationForest u DBSCAN) — Low g 15 e 254 — Lot i ...—» The selected NGBoost model is applied recursively by
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updating body weight at each time step and forecasting the
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conditional next-day growth distribution. This recursive
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projections. Future extensions will incorporate facility-
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optimization under resource limitations.
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