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Ⅰ. Introduction

Fish populations with the same initial body weight often exhibit substantial individual growth variability, even under 

identical rearing and feeding conditions. As illustrated by observed growth patterns, individual trajectories diverge over 

time, forming fast- and slow-growing subpopulations and leading to increasingly wide body weight distributions. This 

variability is not merely incidental but rather an inherent characteristic of aquaculture systems, which becomes more 

pronounced as fish grow.

 Despite this evident heterogeneity, most conventional growth models rely on average growth rates or deterministic 

trajectories. Such approaches obscure the underlying distributional structure, failing to capture variance expansion, 

asymmetry, and extreme growth behaviors that emerge during the production cycle. Consequently, decisions based 

solely on mean growth estimates offer limited reliability for practical operations, including harvest scheduling, tank 

transfers, and feed as well as energy demand forecasting.

 To support robust decision-making at both the farm and facility levels, growth models must account for uncertainty at 

the individual level and propagate it over time. Predicting the full probability distribution of growth, rather than a single 

expected value, enables more realistic planning and risk-aware management. Motivated by these observations, this 

study proposes a distributed, agent-based fish growth simulation framework that integrates individual-level stochastic 

growth modeling with machine learning-based probabilistic growth forecasting, thereby enabling distribution-aware 

growth prediction and operational simulation.

baseline feeding rate was fitted to weight-specific median values, and residuals 

were calculated as deviations from this baseline (Eq. 4-5). This transformation 

removes weight dependency while preserving individual-level feeding 

variability. 

Outlier Detection and Removal 

 Abnormal cohorts exhibiting mass mortality events were identified and 

excluded using a union of Isolation Forest and DBSCAN algorithms. Cohorts 

with daily survival rate drops exceeding 15%, final survival rates below Q1 - 

1.5×IQR, or minimum survival Z-scores below -2.5 were removed. Water 

quality outliers were filtered using IQR-based thresholds (pH: 2×IQR, Temp: 

2×IQR, DO: 1.5×IQR). The final dataset represents normal rearing conditions 

without disease outbreaks or acute environmental stress.

Ⅱ. Data Collection & Preprocessing

Data Source and Scope 

 Operational data were collected from a commercial Japanese eel (Anguilla japonica) aquaculture farm in 

Gochang, South Korea, spanning 2018-2021. The dataset comprised 888 rearing cohorts (SETs), each 

representing an independent production unit from stocking to harvest or transfer. After preprocessing and 

outlier removal, 795 cohorts yielding 81,876 daily growth records were retained for analysis.

 Key variables included body weight (g), pH, water temperature (°C), dissolved oxygen (DO, mg/L), 

feeding rate (%), and survival rate (%). Environmental conditions were maintained within narrow ranges 

typical of recirculating aquaculture systems (RAS): temperature 27.5-31.5°C, pH 4.0-6.0, DO 9.5-17.5 mg/L.

Outlier Detection and Removal 

 Outliers were removed using the union of Isolation Forest and DBSCAN to reduce the influence of sparsely 

represented observations. Cohorts with daily survival rate drops exceeding 15%, final survival rates below 

Q1 - 1.5×IQR, or minimum survival Z-scores below -2.5 were removed. Water quality outliers were filtered 

using IQR-based thresholds (pH: 2×IQR, Temp: 2×IQR, DO: 1.5×IQR). The final dataset represents 

normal rearing conditions without disease outbreaks or acute environmental stress.

Feed Residual Variable 

 To address the strong negative correlation 

between feeding rate and body weight (ρ = -0.66), 

which causes multicollinearity issues, a feed 

residual variable (feed_resid) was constructed. A 

power-law baseline feeding rate was fitted to 

weight-specific median values, and residuals were 

calculated as deviations from this baseline. This 

transformation removes weight dependency while 

preserving individual-level feeding variability. 

Growth Data Construction 

 Given the impracticality of daily individual weighing in commercial operations, body weights were 

estimated daily using Specific Growth Rate (SGR) derived from initial and final measurements recorded 

at stocking and harvest/transfer. This approach reconstructs continuous growth trajectories from discrete 

measurements, enabling daily-resolution modeling.

𝑆𝐺𝑅 %/𝑑𝑎𝑦 =
ln 𝑊𝑓 − ln(𝑊𝑖)

𝑇
× 100

𝑊𝑡 = 𝑊𝑖 × exp
𝑆𝐺𝑅

100
× 𝑡

where 𝑊𝑓 and 𝑊𝑖 denote mean body weights at harvest and stocking (g), T is the total culture duration 

(days), and 𝑊𝑡  is the estimated weight at day 𝑡.

Variable Description Unit Data Type

SET Production cohort – Categorical

days Rearing days day Integer

weight Estimated body weight (SGR-based) g Continuous

growth Daily weight gain g Continuous

pH pH – Continuous

Temp Water temperature °C Continuous

DO Dissolved oxygen mg/L Continuous

feedrate Feeding rate % Continuous

survival rate Survival rate % Continuous

Ⅲ. Model Development 

Probabilistic Regression Architectures 

 Three distributional regression methods were developed to estimate the conditional probability distribution 𝑃 𝐺𝑡 𝑊𝑡,  𝑧𝑡 ) of daily growth 𝐺𝑡 

given current weight 𝑊𝑡 and environmental covariates 𝑧𝑡:

(1) Distributional Regression with Shifted Gamma: An MLP with 2-4 hidden layers (256-512 units) directly estimates shape (α) and scale (β)

parameters of a Gamma distribution. Global offset transformation accommodates occasional negative growth. Parameters were optimized via 

NLL minimization with dropout regularization (0.05-0.20) and early stopping (patience = 20).

(2) Mixture Density Network (MDN): A neural architecture estimating Gaussian mixture parameters—mixing coefficients (𝜋𝑘), means (𝜇𝑘), 

variances (𝜎𝑘2) —with M = 3-6 components to represent multimodal distributions and capture subpopulation heterogeneity. Softmax and 

softplus activations enforce parameter constraints.  

(3)  Natural Gradient Boosting (NGBoost): A gradient boosting framework optimizing Gamma parameters via natural gradients derived from 

information geometry. Decision trees (max_depth = 3) serve as base learners, with 1,500-3,000 iterations and learning rate 0.03-0.12, 

efficiently capturing nonlinear relationships while maintaining probabilistic calibration.

Hyperparameter Optimization 

 All models underwent rigorous Bayesian hyperparameter optimization using Optuna with Tree-structured Parzen Estimator (TPE) sampling, which 

constructs probabilistic surrogate models to efficiently guide exploration of the hyperparameter space. The optimization objective minimized 

validation NLL over 100-200 trials, with median pruning applied to terminate unpromising configurations early and reduce computational overhead. 

Predicted probability density functions at representative weights (81.7g, 175.1g, 284.4g) confirmed consistent heteroscedasticity capture across 

models— rightward distribution shifts with increasing variance as weight increased. NGBoost exhibited smooth, consistent distribution tracking and 

tail behavior. MDN demonstrated high shape flexibility, accurately capturing peaks and asymmetries. Distributional Regression provided a stable, 

conservative baseline. Based on quantitative and qualitative evaluation, NGBoost was selected for multi-batch simulation.

Distributional Regression MDN NGBoost

Evaluation Metrics 

 Probabilistic performance was assessed via four complementary metrics. Negative Log-Likelihood (NLL) measures how well the predicted 

distribution fits observed data, while Continuous Ranked Probability Score (CRPS) quantifies prediction- observation discrepancy by accounting 

for both location and spread. Coverage indicates the proportion of observations falling within predicted 90% confidence intervals, where ideal 

coverage equals the nominal level. Probability Integral Transform (PIT) tests distributional calibration by assessing the uniformity of transformed 

predictions.
Metric

Distributional 

Regression
MDN NGBoost

NLL 0.4506 0.4660 0.4374

CRPS 0.2647 0.2604 0.2607

Coverage 0.9106 0.8910 0.9033

Width 1.6326 1.5841 1.6262

PIT (p-value) < 0.0001 < 0.0001 < 0.0001

Model Performance and Selection 

 Test set evaluation revealed NGBoost achieved optimal accuracy-calibration 

balance (NLL = 0.437, CRPS = 0.261, Coverage = 90.3%), outperforming 

MDN (NLL = 0.466, CRPS = 0.260, Coverage = 89.1%) and Distributional 

Regression (NLL = 0.451, CRPS = 0.265, Coverage = 91.1%).

Hyperparameter
Distributional 

Regression
MDN NGBoost

Hidden layer size 256 384 –

Number of hidden layers 3 2 –

Dropout rate 0.198 0.145 –

Learning rate 1.22 × 10⁻⁴ 1.81 × 10⁻⁴ 0.078

Number of epochs 191 153 –

Batch size 1,024 2,048 –

Number of mixture components – 6 –

Number of boosting iterations – – 3,000

Optimized hyperparameters included neural network architecture 

specifications (hidden layer dimensions: 256-512 units; depth: 2-4 layers), 

regularization parameters (dropout rates: 0.05-0.20), training dynamics 

(learning rates sampled log-uniformly from 10⁻⁴ to 10⁻²; batch sizes: 1,024-

2,048), and convergence criteria (training epochs: 140-200 with early 

stopping). For NGBoost, tree-specific parameters including maximum depth 

(3), boosting iterations (1,500-3,000), and learning rate (0.03-0.12) were 

similarly optimized. Table 1 summarizes the optimal hyperparameter 

configurations selected for each model. This systematic procedure ensured 

fair model comparisons based on architectural differences rather than 

suboptimal configurations.
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Ⅳ. Results & Conclusion

Ⅴ. Application : Recursive Growth Simulation 

A detailed reliability assessment was conducted for the selected NGBoost model. As shown in the diagnostic plots, predictions closely align with 

observations across the full range of daily growth values, without strong systematic bias. Empirical coverage increases monotonically with 

confidence level, indicating well-calibrated prediction intervals. Most absolute errors remain concentrated within a small range, while the predicted 

uncertainty distribution reflects realistic heteroscedastic variability rather than overconfident forecasts. Overall, these results support the use of 

NGBoost as a stable probabilistic growth component for recursive multi-day simulation.

The selected NGBoost model is applied recursively by 

updating body weight at each time step and forecasting the 

conditional next-day growth distribution. This recursive 

framework enables multi-day simulation of mean growth 

trajectories, distributional variance, survival dynamics, 

and aggregate biomass under varying initial stocking 

conditions. Distribution-aware forecasting thereby 

supports risk-informed harvest scheduling, tank transfer 

optimization, and feed as well as energy demand 

projections. Future extensions will incorporate facility-

level operational constraints, including tank capacity and 

energy availability, enabling end-to-end production 

optimization under resource limitations.
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