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Abstract

Fish counting is a key task in aquaculture, yet existing vision-based methods are often tailored to specific facilities and lack scalability
across environments. Vision-language models offer strong cross-domain generalization, making them promising for species-agnostic
fish counting.

Introduction Results

Table 1. Zero-shot fish counting on IOCFish5K (lower is better).
- Importance: Fish counting for biomass estimation, feeding

e . : Model Availability ~ Prompts Training MAE RMSE
optimization, and farm management in aquaculture. :
A Lo o MCNN Open — Fully-supervised 72.93 12.33
- Limitations of existing methods: Existing methods CSRNet Open _ Fully-supervised 38.12  8.86
(Figure 1) are tailored to specific fish farm facilities, limited IOCFormer Open - Fully-supervised 15.91 5.84
scalability and generalization across diverse aquaculture Gemini-1.5-pro  Close Text Train-free  73.51 162.96
: ¢ GPT-40 Close Text Train-free 71.24 158.40
CHVIIONMENts. Qwen2.5VL-7B  Open Text Train-free 82.43 177.83
. Our work: We evaluate the performance of vision language CountGD Open  Text (+Visual)  Train-free  34.29 94.75
models for zero shot fish counting in aquaculture.
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Figure 1. Pipeline of traditional machine learning models for fish counting.

Methodology

Zero-shot fish counting on the IOCFish5K dataset using two cat- T 304 |  EST %)

egories of vision—language models, without model retraining: Figure 3. Example visualizations of CountGD for fish counting.
. General-purpose vision—language models: Qwen, GPT, CountGD GPT-40
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Figure 2. Pipeline of foundation models for fish counting. Discussion

This instability of VLMs for fish counting in aquaculture is
likely caused by hallucination arising from weak visual ground-

ing and reasoning. Promising directions to mitigate the insta-
bility of VLMs include:

Conclusion

This study evaluates the feasibility of applying vision language
models to fish counting in aquaculture. While general purpose
vision language models achieve competitive average accuracy .Prompt engineering: Designing structured prompts to
without retr aining, their predictions exhibit hlgh error variance, reduce ambigu()us or jmp]ausjb]e counting outputs;
limiting counting reliability. In contrast, vision language based
density estimation provides more stable performance for zero-
shot fish counting by better visual grounded ability.

. In-context learning: Incorporating visual and semantic
context to strengthen visual grounding;

- Model adaptation: Adapting VLMs to counting tasks for
more scenarios understanding.
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Figure 5. Pipeline of density-based vision—language counting for fish counting, e.g. Countgd.
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