The energetic value of non-starch polysaccharides in Nile tilapia

The energetic value of non-starch polysaccharides in Nile tilapia

- Carbohydrates classification
 - Low molecular sugars and starch (enzymes).
 - Non-starch polysaccharides (not digested).
 - Quantitative data on NSP digestibility.

- Fish-meal and fish-oil supplies
 - Use of plant ingredients (Carbohydrates).
 - Changes in diet composition.
The energetic value of non-starch polysaccharides in Nile tilapia

- Balanced diet formulation
 1) Nutrient digestibility
 2) Maintenance and growth requirements
The energetic value of non-starch polysaccharides in Nile tilapia

Why this study

1. Can Nile tilapia “digest” NSP?

2. Can the digested NSP be utilized for:
 - maintenance and growth
The energetic value of non-starch polysaccharides in Nile tilapia

Fish and housing

- All male Nile Tilapia (44g).
- 18 tanks all on one RAS (70L, 34 fish/tank)
- Water quality identical.
The energetic value of non-starch polysaccharides in Nile tilapia

- **Diets and feeding**
 - Treatments in 2x3 factorial design:
 - 2 diets: NSP vs. starch. “by including DDGS”

<table>
<thead>
<tr>
<th>Analysed</th>
<th>Starch Diet</th>
<th>NSP Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch (g/kg)</td>
<td>354</td>
<td>241</td>
</tr>
<tr>
<td>NSP (g/kg)</td>
<td>171</td>
<td>286</td>
</tr>
<tr>
<td>Protein (g/kg)</td>
<td>333</td>
<td>328</td>
</tr>
<tr>
<td>Fat (g/kg)</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

- **3 feeding levels**
 - 45% ; 80% and 100%
The energetic value of non-starch polysaccharides in Nile tilapia

- Measurements
 - Performance
 - Nutrient digestibility (Yttrium oxide as marker)
 - Body composition
 - Energy and Nitrogen balances
The energetic value of non-starch polysaccharides in Nile tilapia

Results

- Diet (P<0.05)
- Feeding level (P<0.001)
The energetic value of non-starch polysaccharides in Nile tilapia

- Diet (P<0.001). Feeding level (P<0.001)
- NSP digestibility (22-73%)
The energetic value of non-starch polysaccharides in Nile tilapia

The effect of diet type on nutrients digestibility.

<table>
<thead>
<tr>
<th>Apparent digestibility (%)</th>
<th>Starch diet</th>
<th>NSP diet</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diet</td>
<td>Level</td>
<td>Diet*level</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>91.8</td>
<td>91.0</td>
<td>0.30</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>99.2</td>
<td><.001</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>85.8</td>
<td>83.7</td>
<td>0.87</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>98.3</td>
<td><.001</td>
<td>0.193</td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>78.6</td>
<td>75.0</td>
<td>1.31</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td><.001</td>
<td>0.147</td>
<td></td>
</tr>
</tbody>
</table>
The energetic value of non-starch polysaccharides in Nile tilapia

- DE originating → digested protein (90 kJ kg⁻⁰.₈ BW d⁻¹)
- DE originating → digested fat (34 kJ kg⁻⁰.₈ BW d⁻¹).
- 17% of DE → NSP Diet.
The energetic value of non-starch polysaccharides in Nile tilapia

Results

- Two way Anova: RE \rightarrow Diet (P< 0.05). Feeding level (P<0.001).
- Regression \rightarrow (numerical difference).
 - Maintenance = 96 & 110 (kJ kg$^{-0.8}$ BW d$^{-1}$)
 - Utilization efficiency = 65% & 58%
The energetic value of non-starch polysaccharides in Nile tilapia

- NSP is digested in Nile tilapia (22%-73%)
- Up to 17% of DE originated from NSP in Nile tilapia.
- Increasing NSP content resulted in lower retained energy
- Digested NSP are less well utilized for growth due to:
 1. numerically higher Maintenance
 2. numerically lower utilization efficiency.
Thank you for your attention